refactor v1
This commit is contained in:
54
software/firmware_module/module_rev0/Makefile
Normal file
54
software/firmware_module/module_rev0/Makefile
Normal file
@@ -0,0 +1,54 @@
|
||||
# Source and include
|
||||
BUILD_DIR=build
|
||||
SRCS=$(wildcard src/*.c)
|
||||
OBJS=$(SRCS:%.c=build/%.o)
|
||||
INC=-I ./inc
|
||||
|
||||
# MCU configuration
|
||||
# Set MCU type, clock frequency and programmer
|
||||
MCU=atmega8
|
||||
CLOCK_FREQ=16000000
|
||||
PROG_STR=usbasp
|
||||
|
||||
# Compiler flags
|
||||
CFLAGS=-std=c11 -Wall -Wextra -Werror -mmcu=$(MCU) -DF_CPU=$(CLOCK_FREQ)
|
||||
OPT_FLAGS=-O3 -g -DDEBUG
|
||||
|
||||
# Compiler and utility tools
|
||||
OBJCOPY=avr-objcopy
|
||||
CC=avr-gcc
|
||||
|
||||
# Project configuration
|
||||
PROJ_NAME=sflap_controller_fw
|
||||
PROJ_BLD=$(BUILD_DIR)/$(PROJ_NAME)
|
||||
|
||||
# Rules
|
||||
|
||||
all: $(PROJ_BLD).elf
|
||||
|
||||
$(PROJ_BLD).elf: $(OBJS)
|
||||
$(CC) -o $@ $^ $(INC) $(CFLAGS) $(OPT_FLAGS) $(MCU_FLAGS)
|
||||
$(OBJCOPY) -j .text -j .data -O ihex $@ $(PROJ_BLD).hex
|
||||
$(OBJCOPY) -j .text -j .data -O binary $@ $(PROJ_BLD).bin
|
||||
|
||||
|
||||
build/%.o: %.c
|
||||
mkdir -p build/src
|
||||
$(CC) -c -o $@ $(INC) $(CFLAGS) $(OPT_FLAGS) $(MCU_FLAGS) $<
|
||||
|
||||
release: OPT_FLAGS=-O2 -DNDEBUG
|
||||
release: $(PROJ_BLD).elf
|
||||
|
||||
fuse:
|
||||
avrdude -c $(PROG_STR) -p $(MCU) -U lfuse:w:0xDF:m -U hfuse:w:0xCA:m -B 125kHz
|
||||
|
||||
flash:
|
||||
avrdude -c $(PROG_STR) -p $(MCU) -U flash:w:$(PROJ_BLD).hex:i
|
||||
|
||||
flash-debug:
|
||||
avrdude -c $(PROG_STR) -p $(MCU) -U flash:w:$(PROJ_BLD).elf:e
|
||||
|
||||
clean:
|
||||
rm -rf build
|
||||
|
||||
.PHONY = clean, release, flash, flash-debug
|
||||
162
software/firmware_module/module_rev0/src/main.c
Normal file
162
software/firmware_module/module_rev0/src/main.c
Normal file
@@ -0,0 +1,162 @@
|
||||
#include "mctrl.h"
|
||||
#include "rcount.h"
|
||||
#include "rs485.h"
|
||||
#include <avr/io.h>
|
||||
#include <avr/wdt.h>
|
||||
#include <stdlib.h>
|
||||
#include <util/delay.h>
|
||||
/*
|
||||
* PD0 -> BUS_RX
|
||||
* PD1 -> BUS_TX
|
||||
* PD2 -> BUS_DIR (0=RECV/1=SEND)
|
||||
*
|
||||
* PD3 -> SENSOR_IN
|
||||
*
|
||||
* PC0-3 -> MOTOR CTRL
|
||||
*/
|
||||
|
||||
uint16_t address = 0x0000;
|
||||
int16_t calib_offset = 0x0000;
|
||||
|
||||
void eeprom_write_c(uint16_t address, uint8_t data) {
|
||||
// disable interrupt
|
||||
cli();
|
||||
while (EECR & (1 << EEWE))
|
||||
; // wait until previous write is done
|
||||
EEAR = address;
|
||||
EEDR = data;
|
||||
EECR |= (1 << EEMWE); // enable Master Write Enable
|
||||
EECR |= (1 << EEWE); // write one
|
||||
sei();
|
||||
}
|
||||
|
||||
uint8_t eeprom_read_c(uint16_t address) {
|
||||
while (EECR & (1 << EEWE))
|
||||
; // wait until previous write is done
|
||||
EEAR = address;
|
||||
EECR |= (1 << EERE); // read one
|
||||
return EEDR;
|
||||
}
|
||||
|
||||
#define CONF_CONST_OKAY (uint8_t)0xAA
|
||||
#define CONF_ADDR_OKAY 0x0004
|
||||
#define CONF_ADDR_ADDR 0x0000
|
||||
#define CONF_ADDR_OFFSET 0x0002
|
||||
|
||||
void initialSetup() {
|
||||
wdt_disable();
|
||||
if (eeprom_read_c(CONF_ADDR_OKAY) == CONF_CONST_OKAY) {
|
||||
uint8_t addrL = eeprom_read_c(CONF_ADDR_ADDR);
|
||||
uint8_t addrH = eeprom_read_c(CONF_ADDR_ADDR + 1);
|
||||
address = addrL | (addrH << 8);
|
||||
uint8_t offsetL = eeprom_read_c(CONF_ADDR_OFFSET);
|
||||
uint8_t offsetH = eeprom_read_c(CONF_ADDR_OFFSET + 1);
|
||||
calib_offset = offsetL | (offsetH << 8);
|
||||
} else {
|
||||
eeprom_write_c(CONF_ADDR_ADDR, (uint8_t)0x00);
|
||||
eeprom_write_c(CONF_ADDR_ADDR + 1, (uint8_t)0x00);
|
||||
eeprom_write_c(CONF_ADDR_OFFSET, (uint8_t)0x00);
|
||||
eeprom_write_c(CONF_ADDR_OFFSET + 1, (uint8_t)0x00);
|
||||
eeprom_write_c(CONF_ADDR_OKAY, CONF_CONST_OKAY);
|
||||
}
|
||||
}
|
||||
|
||||
void readCommand() {
|
||||
char *payload = malloc(64);
|
||||
uint8_t payload_len = sfbus_recv_frame(address, payload);
|
||||
if (payload_len > 0) {
|
||||
// read command byte
|
||||
uint8_t opcode = *payload;
|
||||
// parse commands
|
||||
if (opcode == (uint8_t)0x10) {
|
||||
// 0x1O = Set Digit
|
||||
uint8_t targetDigit = *(payload + 1);
|
||||
mctrl_set(targetDigit, 0);
|
||||
} else if (opcode == (uint8_t)0x11) {
|
||||
// 0x11 = Set Digit (full rotation)
|
||||
uint8_t targetDigit = *(payload + 1);
|
||||
mctrl_set(targetDigit, 1);
|
||||
} else if (opcode == (uint8_t)0xF0) {
|
||||
// 0xFO = READ EEPROM
|
||||
uint8_t bytes = 5;
|
||||
char *msg = malloc(bytes + 1);
|
||||
*msg = 0xAA;
|
||||
for (uint16_t i = 1; i < (uint16_t)bytes + 1; i++) {
|
||||
*(msg + i) = eeprom_read_c(i - 1);
|
||||
}
|
||||
_delay_ms(2);
|
||||
sfbus_send_frame(0xFFFF, msg, bytes + 1);
|
||||
free(msg);
|
||||
|
||||
} else if (opcode == (uint8_t)0xF1) {
|
||||
// 0xF1 = WRITE EEPROM
|
||||
eeprom_write_c(CONF_ADDR_OKAY, (char)0xFF);
|
||||
for (uint16_t i = 0; i < 4; i++) {
|
||||
eeprom_write_c(i, *(payload + 1 + i));
|
||||
}
|
||||
eeprom_write_c(CONF_ADDR_OKAY, CONF_CONST_OKAY);
|
||||
// respond with readout
|
||||
uint8_t bytes = 5;
|
||||
char *msg = malloc(bytes + 1);
|
||||
*msg = 0xAA;
|
||||
for (uint16_t i = 1; i < (uint16_t)bytes + 1; i++) {
|
||||
*(msg + i) = eeprom_read_c(i - 1);
|
||||
}
|
||||
_delay_ms(2);
|
||||
sfbus_send_frame(0xFFFF, msg, bytes + 1);
|
||||
free(msg);
|
||||
// now use new addr
|
||||
uint8_t addrL = eeprom_read_c(CONF_ADDR_ADDR);
|
||||
uint8_t addrH = eeprom_read_c(CONF_ADDR_ADDR + 1);
|
||||
address = addrL | (addrH << 8);
|
||||
} else if (opcode == (uint8_t)0xF8) {
|
||||
// 0xF8 = Get Status
|
||||
char *msg = malloc(7);
|
||||
*msg = getSts();
|
||||
uint16_t voltage = getVoltage();
|
||||
*(msg + 2) = (voltage >> 0) & 0xFF;
|
||||
*(msg + 1) = (voltage >> 8) & 0xFF;
|
||||
uint32_t counter = rc_getCounter();
|
||||
*(msg + 6) = (counter >> 0) & 0xFF;
|
||||
*(msg + 5) = (counter >> 8) & 0xFF;
|
||||
*(msg + 4) = (counter >> 16) & 0xFF;
|
||||
*(msg + 3) = (counter >> 24) & 0xFF;
|
||||
_delay_ms(2);
|
||||
sfbus_send_frame(0xFFFF, msg, 7);
|
||||
free(msg);
|
||||
} else if (opcode == (uint8_t)0xFE) {
|
||||
// 0xFE = PING
|
||||
char msg = 0xFF;
|
||||
_delay_ms(2);
|
||||
sfbus_send_frame(0xFFFF, &msg, 1);
|
||||
} else if ((opcode & (uint8_t)0xFE) == (uint8_t)0x20) {
|
||||
// 0x20 = poweroff; 0x21 is poweron
|
||||
uint8_t state = opcode & (uint8_t)0x01;
|
||||
mctrl_power(state);
|
||||
|
||||
} else if (opcode == (uint8_t)0x30) {
|
||||
// 0x30 = reset
|
||||
do {
|
||||
wdt_enable(WDTO_15MS);
|
||||
for (;;) {
|
||||
}
|
||||
} while (0);
|
||||
} else {
|
||||
// invalid opcode
|
||||
char msg = 0xEE;
|
||||
_delay_ms(2);
|
||||
sfbus_send_frame(0xFFFF, &msg, 1);
|
||||
}
|
||||
}
|
||||
free(payload);
|
||||
}
|
||||
|
||||
int main() {
|
||||
initialSetup();
|
||||
rs485_init();
|
||||
mctrl_init();
|
||||
|
||||
while (1 == 1) {
|
||||
readCommand();
|
||||
}
|
||||
}
|
||||
242
software/firmware_module/module_rev0/src/mctrl.c
Normal file
242
software/firmware_module/module_rev0/src/mctrl.c
Normal file
@@ -0,0 +1,242 @@
|
||||
#include "mctrl.h"
|
||||
|
||||
// Motor driver steps definition. Reverse for direction change.
|
||||
uint8_t motor_steps[4] = {
|
||||
0b00000001,
|
||||
0b00000010,
|
||||
0b00000100,
|
||||
0b00001000,
|
||||
};
|
||||
|
||||
uint8_t step_index = 0; // cuurent index in motor_steps
|
||||
uint8_t target_flap = 0; // target flap
|
||||
uint16_t absolute_pos = 0; // absolute position in steps
|
||||
uint16_t rel_offset = 1400; // offset of '0' flap relative to home
|
||||
uint16_t steps_since_home = 0; // steps since last home signal
|
||||
|
||||
// homing util variables
|
||||
uint8_t homing = 0; // current homing step
|
||||
uint8_t lastSens = 0; // home sonsor signal from last tick
|
||||
|
||||
// counter for auto powersaving
|
||||
uint8_t ticksSinceMove = 0;
|
||||
|
||||
// value to goto after the current target_flap is reached. 255 = NONE.
|
||||
uint8_t afterRotation = 255;
|
||||
|
||||
int16_t *delta_err;
|
||||
|
||||
// error and status flags
|
||||
uint8_t sts_flag_errorTooBig = 0; // last home signal too early or too late
|
||||
uint8_t sts_flag_noHome = 0; // no home signal detected. Wheel stuck
|
||||
uint8_t sts_flag_fuse = 0; // blown fuse detcted
|
||||
uint8_t sts_flag_pwrdwn = 0; // device is powered down by controller
|
||||
uint8_t sts_flag_failsafe = 0; // device is powered down for safety reasons
|
||||
uint8_t sts_flag_busy = 0; // device is busy
|
||||
// voltage monitoring variables
|
||||
uint16_t currentVoltage = 0; // current ADC reading
|
||||
uint8_t currentFaultReadings = 0; // ticks with faulty readings (too many will
|
||||
// trip pwrdwn and sts_flag_fuse)
|
||||
|
||||
// initialize motor controller
|
||||
void mctrl_init() {
|
||||
DDRC = 0x0F; // set all pins as outputs
|
||||
PORTC = 0x00; // set all to LOW
|
||||
|
||||
DDRD &= ~(1 << PD3); // PD3 is input
|
||||
PORTD |= (1 << PD3); // PD3 pullup
|
||||
|
||||
// setup adc
|
||||
ADMUX = 0x07; // Aref, ADC7
|
||||
ADCSRA =
|
||||
(1 << ADEN) | (1 << ADSC) | (1 << ADPS1); // Enable ADC, Start first
|
||||
// reading No frerunning, 8MHz
|
||||
while ((ADCSRA & (1 << ADSC)) > 0)
|
||||
; // wait until first reading is complete,
|
||||
// to avoid error flag on first tick!
|
||||
|
||||
// setup timer for ISR
|
||||
TCCR1A = 0;
|
||||
TCCR1B = (1 << WGM12) | (1 << CS11) | (1 << CS10); // CTC und Prescaler 64
|
||||
OCR1A = 480; // 8.000.000 / 64 / 1000 für 1ms
|
||||
OCR1A = 580; // 8.000.000 / 64 / 1000 für 1ms
|
||||
|
||||
// OCR1A = 450; // 8.000.000 / 64 /
|
||||
// 1000 für 1ms
|
||||
TIMSK = 1 << OCIE1A; // Timerinterrupts aktivieren
|
||||
homing = 1;
|
||||
delta_err = malloc(ERROR_DATASETS * sizeof(uint16_t));
|
||||
_delay_ms(1000);
|
||||
sei();
|
||||
}
|
||||
|
||||
// call when critical fail. Powers down motor and sets flags
|
||||
void failSafe() {
|
||||
sts_flag_failsafe = 1;
|
||||
PORTC = 0x00;
|
||||
}
|
||||
|
||||
// read voltage non blocking (called every tick)
|
||||
void readVoltage() {
|
||||
currentVoltage = ADC; // read last measurement
|
||||
ADMUX = 0x07; // select ADC7
|
||||
ADCSRA |= (1 << ADSC); // trigger next reading
|
||||
if (currentVoltage < 128) { // if voltage is too low, fuse is probably broken
|
||||
currentFaultReadings++;
|
||||
if (currentFaultReadings > 20) { // too many fault readings trigger failSafe
|
||||
sts_flag_fuse = 1;
|
||||
failSafe();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// MAIN service routine. Called by timer 1
|
||||
ISR(TIMER1_COMPA_vect) {
|
||||
readVoltage(); // read and check voltage
|
||||
if (sts_flag_pwrdwn == 1 || sts_flag_failsafe == 1) {
|
||||
return;
|
||||
} // if sts_flag_pwrdwn, STOP!
|
||||
if (steps_since_home >
|
||||
STEPS_PRE_REV * 1.5) { // check if home is missing for too long
|
||||
// home missing error. Wheel probably stuck or power fail
|
||||
sts_flag_noHome = 1;
|
||||
failSafe();
|
||||
} else if (homing == 1) { // Homing procedure 1. step: move out of home
|
||||
if ((PIND & (1 << PD3)) > 0) {
|
||||
homing = 2;
|
||||
} else {
|
||||
mctrl_step();
|
||||
}
|
||||
} else if (homing == 2) { // Homing procedure 2. step: find magnet
|
||||
mctrl_step();
|
||||
if ((PIND & (1 << PD3)) == 0) {
|
||||
homing = 3;
|
||||
steps_since_home = 0;
|
||||
absolute_pos = rel_offset;
|
||||
incrementCounter();
|
||||
}
|
||||
} else if (homing == 3) { // Homing procedure 3. step: find magnet
|
||||
if (absolute_pos <= 0) {
|
||||
homing = 0;
|
||||
absolute_pos = rel_offset;
|
||||
}
|
||||
mctrl_step();
|
||||
absolute_pos--;
|
||||
} else { // when no failsafe is triggered and homing is done
|
||||
// calculate target position
|
||||
uint16_t target_pos = (target_flap * STEPS_PRE_FLAP) + rel_offset;
|
||||
if (target_pos >= STEPS_PRE_REV) {
|
||||
target_pos -= STEPS_PRE_REV;
|
||||
}
|
||||
if (absolute_pos != target_pos) {
|
||||
// if target position is not reached, move motor
|
||||
ticksSinceMove = 0;
|
||||
mctrl_step();
|
||||
absolute_pos++;
|
||||
if (absolute_pos >= STEPS_PRE_REV) {
|
||||
absolute_pos -= STEPS_PRE_REV;
|
||||
}
|
||||
// detect home position
|
||||
if ((PIND & (1 << PD3)) == 0) {
|
||||
if (lastSens == 0) {
|
||||
// new home transition
|
||||
int16_t errorDelta =
|
||||
(absolute_pos > (STEPS_PRE_REV / 2) ? absolute_pos - STEPS_PRE_REV
|
||||
: absolute_pos);
|
||||
sts_flag_errorTooBig =
|
||||
(errorDelta > 30) || (errorDelta < -30) ? 1 : 0;
|
||||
// storeErr(errorDelta);
|
||||
absolute_pos = 0;
|
||||
steps_since_home = 0;
|
||||
// increment rotations counter
|
||||
incrementCounter();
|
||||
}
|
||||
lastSens = 1;
|
||||
} else {
|
||||
lastSens = 0;
|
||||
}
|
||||
} else { // if target position is reached
|
||||
if (afterRotation < 55) { // if after rotation is set, apply it as new target
|
||||
target_flap = afterRotation;
|
||||
afterRotation = 255;
|
||||
} else if (ticksSinceMove < 2) { // if motor has not been moved
|
||||
sts_flag_busy = 0;
|
||||
} else if (ticksSinceMove < 50) { // if motor has not been moved
|
||||
ticksSinceMove++;
|
||||
} else { // power off after 50 ticks
|
||||
// PORTC = 0x00; // turn off stepper
|
||||
}
|
||||
}
|
||||
}
|
||||
rc_tick(); // process counter tick, non-blocking
|
||||
}
|
||||
|
||||
// TODO
|
||||
void storeErr(int16_t error) {
|
||||
int16_t *delta_err_tmp = malloc(ERROR_DATASETS * sizeof(uint16_t));
|
||||
memcpy(delta_err, delta_err_tmp + sizeof(uint16_t),
|
||||
((ERROR_DATASETS - 2) * sizeof(uint16_t)));
|
||||
memcpy(&error, delta_err_tmp, sizeof(uint16_t));
|
||||
free(delta_err);
|
||||
delta_err = delta_err_tmp;
|
||||
}
|
||||
// TODO
|
||||
void getErr(int16_t *error) {
|
||||
memcpy(delta_err, error, (ERROR_DATASETS * sizeof(uint16_t)));
|
||||
}
|
||||
|
||||
// return status flag
|
||||
uint8_t getSts() {
|
||||
uint8_t status = sts_flag_errorTooBig; // bit 0: delta too big
|
||||
status |= sts_flag_noHome << 1; // bit 1: no home found
|
||||
status |= sts_flag_fuse << 2; // bit 2: fuse blown
|
||||
status |= sts_flag_pwrdwn << 4; // bit 4: device powered down
|
||||
status |= sts_flag_failsafe << 5; // bit 5: failsafe active
|
||||
status |= sts_flag_busy << 6; // bit 6: failsafe active
|
||||
if ((PIND & (1 << PD3)) == 0) {
|
||||
status |= (1 << 3);
|
||||
}
|
||||
return status;
|
||||
}
|
||||
|
||||
// return voltage
|
||||
uint16_t getVoltage() { return currentVoltage; }
|
||||
|
||||
// set target flap
|
||||
void mctrl_set(uint8_t flap, uint8_t fullRotation) {
|
||||
sts_flag_busy = 1;
|
||||
if (fullRotation == 0) {
|
||||
target_flap = flap;
|
||||
// if (absolute_pos < STEPS_ADJ) {
|
||||
// absolute_pos += STEPS_PRE_REV;
|
||||
// }
|
||||
// absolute_pos -= STEPS_ADJ;
|
||||
} else {
|
||||
target_flap = (target_flap + (STEPS_PRE_FLAP - 1)) % STEPS_PRE_FLAP;
|
||||
afterRotation = flap;
|
||||
}
|
||||
}
|
||||
|
||||
// trigger home procedure
|
||||
void mctrl_home() { homing = 1; }
|
||||
|
||||
// trigger home procedure
|
||||
void mctrl_power(uint8_t state) {
|
||||
if (state == 0) {
|
||||
sts_flag_pwrdwn = 1;
|
||||
PORTC = 0x00;
|
||||
}else{
|
||||
sts_flag_pwrdwn = 0;
|
||||
PORTC = motor_steps[step_index];
|
||||
}
|
||||
}
|
||||
|
||||
// do stepper step (I/O)
|
||||
void mctrl_step() {
|
||||
step_index++;
|
||||
steps_since_home++;
|
||||
if (step_index > 3) {
|
||||
step_index = 0;
|
||||
}
|
||||
PORTC = motor_steps[step_index];
|
||||
}
|
||||
36
software/firmware_module/module_rev0/src/mctrl.h
Normal file
36
software/firmware_module/module_rev0/src/mctrl.h
Normal file
@@ -0,0 +1,36 @@
|
||||
#pragma once
|
||||
|
||||
#define MP_A PC0
|
||||
#define MP_B PC1
|
||||
#define MP_C PC2
|
||||
#define MP_D PC3
|
||||
|
||||
#define STEPS_PRE_REV 2025
|
||||
#define STEPS_PRE_FLAP 45
|
||||
#define STEPS_ADJ 0 // added per flap to compensate for motor power down
|
||||
#define AMOUNTFLAPS 45
|
||||
|
||||
#define ERROR_DATASETS 8
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
#include <util/delay.h>
|
||||
#include "rcount.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
void mctrl_init();
|
||||
void mctrl_step();
|
||||
void mctrl_set(uint8_t flap, uint8_t fullRotation);
|
||||
|
||||
void getErr(int16_t* error);
|
||||
uint8_t getSts();
|
||||
uint16_t getVoltage();
|
||||
void mctrl_power(uint8_t state);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif // __cplusplus
|
||||
45
software/firmware_module/module_rev0/src/rcount.c
Normal file
45
software/firmware_module/module_rev0/src/rcount.c
Normal file
@@ -0,0 +1,45 @@
|
||||
#include "rcount.h"
|
||||
|
||||
uint8_t rc_eeprom_write_c(uint16_t address, uint8_t data) {
|
||||
// disable interrupt
|
||||
if (EECR & (1 << EEWE)) { return 1; }
|
||||
EEAR = address;
|
||||
EEDR = data;
|
||||
EECR |= (1 << EEMWE); // enable Master Write Enable
|
||||
EECR |= (1 << EEWE); // write one
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t rc_eeprom_read_c(uint16_t address) {
|
||||
while (EECR & (1 << EEWE))
|
||||
; // wait until previous write is done
|
||||
EEAR = address;
|
||||
EECR |= (1 << EERE); // read one
|
||||
return EEDR;
|
||||
}
|
||||
|
||||
uint32_t counter = (uint32_t)0xFFFFFFFF;
|
||||
uint8_t counter_phase = 5;
|
||||
void rc_tick() {
|
||||
if (counter == (uint32_t)0xFFFFFFFF) { counter = rc_getCounter(); }
|
||||
if (counter_phase < 5) {
|
||||
cli();
|
||||
if (rc_eeprom_write_c(0x100 + counter_phase, ((counter >> (counter_phase * 8)) & 0xFF)) == 0) {
|
||||
counter_phase++;
|
||||
}
|
||||
sei();
|
||||
}
|
||||
}
|
||||
|
||||
void incrementCounter() {
|
||||
counter++;
|
||||
counter_phase = 0;
|
||||
}
|
||||
|
||||
uint32_t rc_getCounter() {
|
||||
uint32_t counter = rc_eeprom_read_c(0x100);
|
||||
counter |= ((uint32_t)rc_eeprom_read_c(0x101) << 8);
|
||||
counter |= ((uint32_t)rc_eeprom_read_c(0x102) << 16);
|
||||
counter |= ((uint32_t)rc_eeprom_read_c(0x103) << 24);
|
||||
return counter;
|
||||
}
|
||||
13
software/firmware_module/module_rev0/src/rcount.h
Normal file
13
software/firmware_module/module_rev0/src/rcount.h
Normal file
@@ -0,0 +1,13 @@
|
||||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
void incrementCounter();
|
||||
uint32_t rc_getCounter();
|
||||
void rc_tick();
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif // __cplusplus
|
||||
|
||||
86
software/firmware_module/module_rev0/src/rs458.c
Normal file
86
software/firmware_module/module_rev0/src/rs458.c
Normal file
@@ -0,0 +1,86 @@
|
||||
#include "rs485.h"
|
||||
|
||||
void rs485_init() {
|
||||
// init I/O
|
||||
DDRD &= ~(1 << PD0); // BUS_DIR & TX is OUTPUT
|
||||
DDRD |= (1 << PD2) | (1 << PD1); // BUS_DIR & TX is OUTPUT
|
||||
PORTD &= 0x07; // clear PD0-PD4
|
||||
// init UART
|
||||
UBRRH = (BAUDRATE >> 8);
|
||||
UBRRL = BAUDRATE; // set baud rate
|
||||
UCSRB |= (1 << TXEN) | (1 << RXEN); // enable receiver and transmitter
|
||||
UCSRC |= (1 << URSEL) | (1 << UCSZ0) | (1 << UCSZ1); // 8bit data format
|
||||
}
|
||||
|
||||
void dbg(char data) {
|
||||
while (!(UCSRA & (1 << UDRE)))
|
||||
;
|
||||
UDR = data;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void rs485_send_c(char data) {
|
||||
PORTD |= (1 << PD2); // set transciever to transmitt
|
||||
while (!(UCSRA & (1 << UDRE)))
|
||||
; // wait until buffer is empty
|
||||
UCSRA = (1 << TXC); // clear transmit Complete bit
|
||||
UDR = data;
|
||||
while (!(UCSRA & (1 << TXC)))
|
||||
; // wait until transmitt complete
|
||||
PORTD &= ~(1 << PD2); // set transciever to transmitt
|
||||
}
|
||||
|
||||
void rs485_send_str(char* data) {
|
||||
for (unsigned int i = 0; i < sizeof(data); i++) {
|
||||
rs485_send_c(data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
char rs485_recv_c() {
|
||||
while (!(UCSRA & (1 << RXC)))
|
||||
;
|
||||
; // wait while data is being received
|
||||
return UDR;
|
||||
}
|
||||
|
||||
// SFBUS Functions
|
||||
uint8_t sfbus_recv_frame(uint16_t address, char* payload) {
|
||||
while (rs485_recv_c() != '+') {} // Wwait for start byte
|
||||
|
||||
uint8_t frm_version = rs485_recv_c();
|
||||
if (frm_version != 0) return 0;
|
||||
uint8_t frm_length = rs485_recv_c();
|
||||
uint8_t frm_addrL = rs485_recv_c();
|
||||
uint8_t frm_addrH = rs485_recv_c();
|
||||
|
||||
uint16_t frm_addr = frm_addrL | (frm_addrH << 8);
|
||||
if (frm_addr != address) return 0;
|
||||
char* _payload = payload;
|
||||
for (uint8_t i = 0; i < (frm_length - 3); i++) {
|
||||
*_payload = rs485_recv_c();
|
||||
_payload++;
|
||||
}
|
||||
|
||||
if (rs485_recv_c() != '$') return -1;
|
||||
return frm_length;
|
||||
}
|
||||
|
||||
void sfbus_send_frame(uint16_t address, char* payload, uint8_t length) {
|
||||
char framelen = length;
|
||||
|
||||
rs485_send_c(SFBUS_SOF_BYTE); // send startbyte 3 times
|
||||
rs485_send_c(0); // send protocol version
|
||||
rs485_send_c(framelen + 3); // send lentgh of remaining frame
|
||||
|
||||
rs485_send_c(address & 0xFF); // target address
|
||||
rs485_send_c((address >> 8) & 0xFF);
|
||||
|
||||
while (framelen > 0) { // send payload
|
||||
rs485_send_c(*payload);
|
||||
payload++;
|
||||
framelen--;
|
||||
}
|
||||
|
||||
rs485_send_c(SFBUS_EOF_BYTE); // send end of frame byte
|
||||
}
|
||||
27
software/firmware_module/module_rev0/src/rs485.h
Normal file
27
software/firmware_module/module_rev0/src/rs485.h
Normal file
@@ -0,0 +1,27 @@
|
||||
#pragma once
|
||||
//#define F_CPU 16000000UL
|
||||
#define UART_BAUD 19200
|
||||
#define BAUDRATE ((F_CPU) / (UART_BAUD * 16UL) - 1) // set baud rate value for UBRR
|
||||
|
||||
#define SFBUS_SOF_BYTE '+'
|
||||
#define SFBUS_EOF_BYTE '$'
|
||||
|
||||
#include <avr/io.h>
|
||||
#include <avr/interrupt.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
void dbg(char data);
|
||||
|
||||
void rs485_init(void);
|
||||
void rs485_send_c(char data);
|
||||
void rs485_send_str(char* data);
|
||||
char rs485_recv_c(void);
|
||||
|
||||
uint8_t sfbus_recv_frame(uint16_t address, char* payload);
|
||||
void sfbus_send_frame(uint16_t address, char* payload, uint8_t length);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif // __cplusplus
|
||||
153
software/firmware_module/sketch_sep11a/sketch_sep11a.ino
Executable file
153
software/firmware_module/sketch_sep11a/sketch_sep11a.ino
Executable file
@@ -0,0 +1,153 @@
|
||||
#include <Stepper.h>
|
||||
|
||||
|
||||
#define BAUDRATE 115200
|
||||
|
||||
#define STEPPERPIN1 11
|
||||
#define STEPPERPIN2 10
|
||||
#define STEPPERPIN3 9
|
||||
#define STEPPERPIN4 8
|
||||
#define STEPS 2038 //28BYJ-48 stepper, number of steps
|
||||
#define HALLPIN 7 //Pin of hall sensor
|
||||
#define AMOUNTFLAPS 45
|
||||
|
||||
#define ROTATIONDIRECTION 1 //-1 for reverse direction
|
||||
#define OVERHEATINGTIMEOUT 2 //timeout in seconds to avoid overheating of stepper. After starting rotation, the counter will start. Stepper won't move again until timeout is passed
|
||||
unsigned long lastRotation = 0;
|
||||
|
||||
//globals
|
||||
int displayedLetter = 0; //currently shown letter
|
||||
int desiredLetter = 0; //letter to be shown
|
||||
const String letters[] = {" ", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "Ä", "Ö", "Ü", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ":", ".", "-", "?", "!"};
|
||||
Stepper stepper(STEPS, STEPPERPIN1, STEPPERPIN3, STEPPERPIN2, STEPPERPIN4); //stepper setup
|
||||
bool lastInd1 = false; //store last status of phase
|
||||
bool lastInd2 = false; //store last status of phase
|
||||
bool lastInd3 = false; //store last status of phase
|
||||
bool lastInd4 = false; //store last status of phase
|
||||
float missedSteps = 0; //cummulate steps <1, to compensate via additional step when reaching >1
|
||||
int currentlyrotating = 0; // 1 = drum is currently rotating, 0 = drum is standing still
|
||||
int stepperSpeed = 10; //current speed of stepper, value only for first homing
|
||||
|
||||
int eeAddress = 0; //EEPROM address for calibration offset
|
||||
int calOffset; //Offset for calibration in steps, stored in EEPROM, gets read in setup
|
||||
int receivedNumber = 0;
|
||||
|
||||
|
||||
void setup() {
|
||||
// put your setup code here, to run once:
|
||||
Serial.begin(BAUDRATE);
|
||||
Serial.println("starting unit");
|
||||
stepperSpeed = 17; //until homing is implemented
|
||||
}
|
||||
|
||||
void loop() {
|
||||
// put your main code here, to run repeatedly:
|
||||
int calLetters[10] = {0, 26, 1, 21, 14, 43, 30, 31, 32, 39};
|
||||
for (int i = 0; i < 10; i++) {
|
||||
int currentCalLetter = calLetters[i];
|
||||
rotateToLetter(currentCalLetter);
|
||||
delay(5000);
|
||||
}
|
||||
}
|
||||
|
||||
//rotate to letter
|
||||
void rotateToLetter(int toLetter) {
|
||||
if (lastRotation == 0 || (millis() - lastRotation > OVERHEATINGTIMEOUT * 1000)) {
|
||||
lastRotation = millis();
|
||||
//get letter position
|
||||
int posLetter = -1;
|
||||
posLetter = toLetter;
|
||||
int posCurrentLetter = -1;
|
||||
posCurrentLetter = displayedLetter;
|
||||
//int amountLetters = sizeof(letters) / sizeof(String);
|
||||
#ifdef serial
|
||||
Serial.print("go to letter: ");
|
||||
Serial.println(letters[toLetter]);
|
||||
#endif
|
||||
//go to letter, but only if available (>-1)
|
||||
if (posLetter > -1) { //check if letter exists
|
||||
//check if letter is on higher index, then no full rotaion is needed
|
||||
if (posLetter >= posCurrentLetter) {
|
||||
#ifdef serial
|
||||
Serial.println("direct");
|
||||
#endif
|
||||
//go directly to next letter, get steps from current letter to target letter
|
||||
int diffPosition = posLetter - posCurrentLetter;
|
||||
startMotor();
|
||||
stepper.setSpeed(stepperSpeed);
|
||||
//doing the rotation letterwise
|
||||
for (int i = 0; i < diffPosition; i++) {
|
||||
float preciseStep = (float)STEPS / (float)AMOUNTFLAPS;
|
||||
int roundedStep = (int)preciseStep;
|
||||
missedSteps = missedSteps + ((float)preciseStep - (float)roundedStep);
|
||||
if (missedSteps > 1) {
|
||||
roundedStep = roundedStep + 1;
|
||||
missedSteps--;
|
||||
}
|
||||
stepper.step(ROTATIONDIRECTION * roundedStep);
|
||||
}
|
||||
}
|
||||
else {
|
||||
//full rotation is needed, good time for a calibration
|
||||
#ifdef serial
|
||||
Serial.println("full rotation incl. calibration");
|
||||
#endif
|
||||
//calibrate(false); //calibrate revolver and do not stop motor
|
||||
//startMotor();
|
||||
stepper.setSpeed(stepperSpeed);
|
||||
for (int i = 0; i < posLetter; i++) {
|
||||
float preciseStep = (float)STEPS / (float)AMOUNTFLAPS;
|
||||
int roundedStep = (int)preciseStep;
|
||||
missedSteps = missedSteps + (float)preciseStep - (float)roundedStep;
|
||||
if (missedSteps > 1) {
|
||||
roundedStep = roundedStep + 1;
|
||||
missedSteps--;
|
||||
}
|
||||
stepper.step(ROTATIONDIRECTION * roundedStep);
|
||||
}
|
||||
}
|
||||
//store new position
|
||||
displayedLetter = toLetter;
|
||||
//rotation is done, stop the motor
|
||||
delay(100); //important to stop rotation before shutting of the motor to avoid rotation after switching off current
|
||||
stopMotor();
|
||||
}
|
||||
else {
|
||||
#ifdef serial
|
||||
Serial.println("letter unknown, go to space");
|
||||
#endif
|
||||
desiredLetter = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//switching off the motor driver
|
||||
void stopMotor() {
|
||||
lastInd1 = digitalRead(STEPPERPIN1);
|
||||
lastInd2 = digitalRead(STEPPERPIN2);
|
||||
lastInd3 = digitalRead(STEPPERPIN3);
|
||||
lastInd4 = digitalRead(STEPPERPIN4);
|
||||
|
||||
digitalWrite(STEPPERPIN1, LOW);
|
||||
digitalWrite(STEPPERPIN2, LOW);
|
||||
digitalWrite(STEPPERPIN3, LOW);
|
||||
digitalWrite(STEPPERPIN4, LOW);
|
||||
#ifdef serial
|
||||
Serial.println("Motor Stop");
|
||||
#endif
|
||||
currentlyrotating = 0; //set active state to not active
|
||||
delay(100);
|
||||
}
|
||||
|
||||
void startMotor() {
|
||||
#ifdef serial
|
||||
Serial.println("Motor Start");
|
||||
#endif
|
||||
currentlyrotating = 1; //set active state to active
|
||||
digitalWrite(STEPPERPIN1, lastInd1);
|
||||
digitalWrite(STEPPERPIN2, lastInd2);
|
||||
digitalWrite(STEPPERPIN3, lastInd3);
|
||||
digitalWrite(STEPPERPIN4, lastInd4);
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user